By Topic

Asymptotic Optimality Theory for Decentralized Sequential Multihypothesis Testing Problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yan Wang ; The H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, USA ; Yajun Mei

The Bayesian formulation of sequentially testing M ≥ 3 hypotheses is studied in the context of a decentralized sensor network system. In such a system, local sensors observe raw observations and send quantized sensor messages to a fusion center which makes a final decision when stopping taking observations. Asymptotically optimal decentralized sequential tests are developed from a class of “two-stage” tests that allows the sensor network system to make a preliminary decision in the first stage and then optimize each local sensor quantizer accordingly in the second stage. It is shown that the optimal local quantizer at each local sensor in the second stage can be defined as a maximin quantizer which turns out to be a randomization of at most M-1 unambiguous likelihood quantizers (ULQ). We first present in detail our results for the system with a single sensor and binary sensor messages, and then extend to more general cases involving any finite alphabet sensor messages, multiple sensors, or composite hypotheses.

Published in:

IEEE Transactions on Information Theory  (Volume:57 ,  Issue: 10 )