Cart (Loading....) | Create Account
Close category search window
 

Achievable Rate Regions and Performance Comparison of Half Duplex Bi-Directional Relaying Protocols

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Sang Joon Kim ; Sch. of Eng. & Appl. Sci., Harvard Univ., Cambridge, MA, USA ; Devroye, N. ; Mitran, P. ; Tarokh, Vahid

In a bi-directional relay channel, two nodes wish to exchange independent messages over a shared wireless half-duplex channel with the help of a relay. In this paper, we derive achievable rate regions for four new half-duplex protocols and compare these to four existing half-duplex protocols and outer bounds. In time, our protocols consist of either two or three phases. In the two phase protocols, both users simultaneously transmit during the first phase and the relay alone transmits during the second phase, while in the three phase protocol the two users sequentially transmit followed by a transmission from the relay. The relay may forward information in one of four manners; we outline existing amplify and forward (AF), decode and forward (DF), lattice based, and compress and forward (CF) relaying schemes and introduce the novel mixed forward scheme. The latter is a combination of CF in one direction and DF in the other. We derive achievable rate regions for the CF and Mixed relaying schemes for the two and three phase protocols. We provide a comprehensive treatment of eight possible half-duplex bi-directional relaying protocols in Gaussian noise, obtaining their relative performance under different SNR and relay geometries.

Published in:

Information Theory, IEEE Transactions on  (Volume:57 ,  Issue: 10 )

Date of Publication:

Oct. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.