By Topic

Highly-Dynamic Cross-Layered Aeronautical Network Architecture

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Rohrer, J.P. ; Dept. of Electr. Eng. & Comput. Sci., Univ. of Kansas, Lawrence, KS, USA ; Jabbar, A. ; Cetinkaya, E.K. ; Perrins, E.
more authors

Highly-dynamic wireless environments present unique challenges to end-to-end communication networks, caused by the time-varying connectivity of high-velocity nodes combined with the unreliability of the wireless communication channel. Such conditions are found in a variety of networks, including those used for tactical communications and aeronautical telemetry. Addressing these challenges requires the design of new protocols and mechanisms specific to this environment. We present a new domain-specific architecture and protocol suite, including cross-layer optimizations between the physical, MAC, network, and transport layers. This provides selectable reliability for multiple applications within highly mobile tactical airborne networks. Our contributions for this environment include the transmission control protocol (TCP)-friendly transport protocol, AeroTP; the IP-compatible network layer, AeroNP; and the geolocation aware routing protocol AeroRP. Through simulations we show significant performance improvement over the traditional TCP/IP/MANET protocol stack.

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:47 ,  Issue: 4 )