Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Cooperative Search by UAV Teams: A Model Predictive Approach using Dynamic Graphs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Riehl, J.R. ; AT&T Gov. Solutions, Santa Barbara, CA, USA ; Collins, G.E. ; Hespanha, J.P.

A receding-horizon cooperative search algorithm is presented that jointly optimizes routes and sensor orientations for a team of autonomous agents searching for a mobile target in a closed and bounded region. By sampling this region at locations with high target probability at each time step, we reduce the continuous search problem to a sequence of optimizations on a finite, dynamically updated graph whose vertices represent waypoints for the searchers and whose edges indicate potential connections between the waypoints. Paths are computed on this graph using a receding-horizon approach, in which the horizon is a fixed number of graph vertices. To facilitate a fair comparison between paths of varying length on nonuniform graphs, the optimization criterion measures the probability of finding the target per unit travel time. Using this algorithm, we show that the team discovers the target in finite time with probability one. Simulations verify that this algorithm makes effective use of agents and outperforms previously proposed search algorithms. We have successfully hardware tested this algorithm in two small unmanned aerial vehicles (UAVs) with gimbaled video cameras.

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:47 ,  Issue: 4 )