By Topic

Comparison of flux switching and surface mounted permanent magnet generators for high-speed applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Thomas, A.S. ; Dept. of Electron. & Electr. Eng., Univ. of Sheffield, Sheffield, UK ; Zhu, Z.Q. ; Jewell, G.W.

For embedded power generation within civil gas turbine engines, generators are anticipated to endure high rotor speeds coupled with large rotor diameters. With variable frequency permanent magnet generators finding increased roles because of the perceived higher torque density, the issue of rotor integrity becomes a critical issue. Although banding has been previously used in surface mounted PM (SPM) machines, they inevitably increase the airgap and hence reduce the torque capability of the machine. The flux-switching PM (FSPM) machine has been an intense topic of research for many years. By combining its armature and field sources in the stator, its rotor is a passive single piece, salient steel lamination, making it inherently suitable for high speed applications. This study compares both machines when optimised for high speed applications by designing the rotors of both machines for mechanical integrity and comparing the electromagnetic performance. The electromagnetic trade off in the mechanical optimisation of the FSPM machine is found to be negligible, in contrast to the ~33~ reduction of SPM flux linkage because of the increased airgap length. The performance of FSPM machine is validated on a scaled FSPM prototype.

Published in:

Electrical Systems in Transportation, IET  (Volume:1 ,  Issue: 3 )