Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Distributed detection in noisy sensor networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kar, S. ; Dept. of Electr. Eng., Princeton Univ., Princeton, NJ, USA ; Tandon, R. ; Poor, H.V. ; Shuguang Cui

This paper considers distributed detection over a noisy network, in which each connected sensor pair can communicate over an additive noise channel. With non-identically distributed generic sensor observations, a mixed time scale recursive algorithm for binary hypothesis testing over such networks is proposed. Under some mild assumptions on network connectivity and global detectability (the positivity of the global or centralized Kullback-Liebler divergence), this algorithm yields asymptotically zero probabilities of Type-I and Type-II errors (henceforth referred to as probabilities of error). When sensor observations are identically distributed, a simplified single time scale version of the proposed algorithm is shown to achieve asymptotically zero probabilities of error. Convergence rate guarantees in terms of asymptotic normality of certain scaled decision variables are provided for this simplified procedure. As an example, a practical Gaussian sensor network is considered, for which the error decay exponents are explicitly characterized in terms of the network and noise parameters.

Published in:

Information Theory Proceedings (ISIT), 2011 IEEE International Symposium on

Date of Conference:

July 31 2011-Aug. 5 2011