By Topic

Distributed resource allocation for proportional fairness in multi-band wireless systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
I-Hong Hou ; Dept. of CS, Univ. of Illinois, Urbana, IL, USA ; Gupta, P.

A challenging problem in multi-band multi-cell self-organized wireless systems, such as multi-channel Wi-Fi networks, femto/pico cells in 3G/4G cellular networks, and more recent wireless networks over TV white spaces, is of distributed resource allocation. This involves four components: channel selection, client association, channel access, and client scheduling. In this paper, we present a unified framework for jointly addressing the four components with the global system objective of maximizing the clients throughput in a proportionally fair manner. Our formulation allows a natural dissociation of the problem into two sub-parts. We show that the first part, involving channel access and client scheduling, is convex and derive a distributed adaptation procedure for achieving Pareto-optimal solution. For the second part, involving channel selection and client association, we develop a Gibbs-sampler based approach for local adaptation to achieve the global objective, as well as derive fast greedy algorithms from it that achieve good solutions.

Published in:

Information Theory Proceedings (ISIT), 2011 IEEE International Symposium on

Date of Conference:

July 31 2011-Aug. 5 2011