By Topic

Feature selection of pathway markers for microarray-based disease classification using negatively correlated feature sets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jonathan H. Chan ; School of Information Technology, King Mongkut's University of Technology Thonburi, Bangkok 10140 Thailand ; Pitak Sootanan ; Ponlavit Larpeampaisarl

Microarray-based classification of disease states is based on gene expression profiles of subjects. Various methods have been proposed to identify diagnostic markers that can accurately discriminate between two classes such as case and control. Many of the methods that used only a subset of ranked genes in the pathway may not be able to fully represent the classification boundaries for the two disease classes. The use of negatively correlated feature sets (NCFS) for identifying phenotype-correlated genes (PCOGs) and inferring pathway activities is used here. The NCFS-based pathway activity inference schemes significantly improved the power of pathway markers to discriminate between normal and cancer, as well as relapse and non-relapse, classes in microarray expression datasets of breast cancer. Furthermore, the use of ranker feature selection methods with top 3 pathway markers has been shown to be suitable for both logistic and NB classifiers. In addition, the proposed single pathway classification (SPC) ranker provided similar performance to the traditional SVM and Relief-F feature selection methods. The identification of PCOGs within each pathway, especially with the use of NCFS based on correlation with ideal markers (NCFS-i), helps to minimize the effect of potentially noisy experimental data, leading to accurate and robust classification results.

Published in:

Neural Networks (IJCNN), The 2011 International Joint Conference on

Date of Conference:

July 31 2011-Aug. 5 2011