By Topic

Coupling clustering and visualization for knowledge discovery from data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Cabanes, G. ; LIPN-CNRS, Villetaneuse, France ; Bennani, Y.

The exponential growth of data generates terabytes of very large databases. The growing number of data dimensions and data objects presents tremendous challenges for effective data analysis and data exploration methods and tools. One solution commonly proposed is the use of a condensed description of the properties and structure of data. Thus, it becomes crucial to have visualization tools capable of representing the data structure, not from the data themselves, but from these condensed descriptions. The purpose of our work described in this paper is to develop and put a synergistic visualization of data and knowledge into the knowledge discovery process. We propose here a method of describing data from enriched and segmented prototypes using a clustering algorithm. We then introduce a visualization tool that can enhance the structure within and between groups in data. We show, using some artificial and real databases, the relevance of the proposed method.

Published in:

Neural Networks (IJCNN), The 2011 International Joint Conference on

Date of Conference:

July 31 2011-Aug. 5 2011