Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Online incremental clustering with distance metric learning for high dimensional data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Okada, S. ; Dept..of Comput. Intell. & Syst. Sci., Tokyo Inst. of Technol. of Japan, Tokyo, Japan ; Nishida, T.

In this paper, we present a novel incremental clustering algorithm which assigns of a set of observations into clusters and learns the distance metric iteratively in an incremental manner. The proposed algorithm SOINN-AML is composed based on the Self-organizing Incremental Neural Network (Shen et al 2006), which represents the distribution of unlabeled data and reports a reasonable number of clusters. SOINN adopts a competitive Hebbian rule for each input signal, and distance between nodes is measured using the Euclidean distance. Such algorithms rely on the distance metric for the input data patterns. Distance Metric Learning (DML) learns a distance metric for the high dimensional input space of data that preserves the distance relation among the training data. DML is not performed for input space of data in SOINN based approaches. SOINN-AML learns input space of data by using the Adaptive Distance Metric Learning (AML) algorithm which is one of the DML algorithms. It improves the incremental clustering performance of the SOINN algorithm by optimizing the distance metric in the case that input data space is high dimensional. In experimental results, we evaluate the performance by using two artificial datasets, seven real datasets from the UCI dataset and three real image datasets. We have found that the proposed algorithm outperforms conventional algorithms including SOINN (Shen et al 2006) and Enhanced SOINN (Shen et al 2007). The improvement of clustering accuracy (NMI) is between 0.03 and 0.13 compared to state of the art SOINN based approaches.

Published in:

Neural Networks (IJCNN), The 2011 International Joint Conference on

Date of Conference:

July 31 2011-Aug. 5 2011