Cart (Loading....) | Create Account
Close category search window
 

Multi-objective evolutionary optimization of exemplar-based classifiers: A PNN test case

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Rubio, T. ; Dept. of EECS, Univ. of Central Florida, Orlando, FL, USA ; Tiantian Zhang ; Georgiopoulos, M. ; Kaylani, A.

In this paper the major principles to effectively design a parameter-less, multi-objective evolutionary algorithm that optimizes a population of probabilistic neural network (PNN) classifier models are articulated; PNN is an example of an exemplar-based classifier. These design principles are extracted from experiences, discussed in this paper, which guided the creation of the parameter-less multi-objective evolutionary algorithm, named MO-EPNN (multi-objective evolutionary probabilistic neural network). Furthermore, these design principles are also corroborated by similar principles used for an earlier design of a parameter-less, multi-objective genetic algorithm used to optimize a population of ART (adaptive resonance theory) models, named MO-GART (multi-objective genetically optimized ART); the ART classifier model is another example of an exemplar-based classifier model. MO-EPNN's performance is compared to other popular classifier models, such as SVM (Support Vector Machines) and CART (Classification and Regression Trees), as well as to an alternate competitive method to genetically optimize the PNN. These comparisons indicate that MO-EPNN's performance (generalization on unseen data and size) compares favorably to the aforementioned classifier models and to the alternate genetically optimized PNN approach. MO-EPPN's good performance, and MO-GART's earlier reported good performance, both of whose design relies on the same principles, gives credence to these design principles, delineated in this paper.

Published in:

Neural Networks (IJCNN), The 2011 International Joint Conference on

Date of Conference:

July 31 2011-Aug. 5 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.