By Topic

Finding patterns in labeled graphs using spectrum feature vectors in a SOM network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Rigoberto Fonseca ; National Institute of Astrophysics, Optics and Electronics, Tonantzintla, Mexico ; Pilar Gómez-Gil ; Jesús A. González ; Iván Olmos

Knowledge discovery in structured databases is very important nowadays. In the last years, graph-based data mining algorithms have used artificial neural networks as tools to support clustering. Several of these algorithms have obtained promising results, but they show expensive computational costs. In this work we introduce an algorithm for clustering graphs based on a SOM network, which is part of a process for discovering useful frequent patterns in large graph databases. Our algorithm is able to handle non-directed, cyclic graphs with labels in vertices and edges. An important characteristic is that it presents polynomial computational complexity, because it uses as input a feature vector built with the spectra of the Laplacian of an adjacent matrix. Such matrix contains codes representing the labels in the graph, which preserves the semantic information included in the graphs to be grouped. We tested our algorithm in a small set of graphs and in a large structured database, finding that it creates meaningful groups of graphs.

Published in:

Neural Networks (IJCNN), The 2011 International Joint Conference on

Date of Conference:

July 31 2011-Aug. 5 2011