By Topic

Application of Cover's theorem to the evaluation of the performance of CI observers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Samuelson, F. ; Food & Drug Adm., Center for Devices & Radiol. Health, Silver Spring, MD, USA ; Brown, D.G.

For any N points arbitrarily located in a d-dimensional space, Thomas Cover popularized and augmented a theorem that gives an expression for the number of the 2N possible two-class dichotomies of those points that are separable by a hyperplane. Since separation of two-class dichotomies in d dimensions is a common problem addressed by computational intelligence (CI) decision functions or “observers,” Cover's theorem provides a benchmark against which CI observer performance can be measured. We demonstrate that the performance of a simple perceptron approaches the ideal performance and how a single layer MLP and an SVM fare in comparison. We show how Cover's theorem can be used to develop a procedure for CI parameter optimization and to serve as a descriptor of CI complexity. Both simulated and micro-array genomic data are used.

Published in:

Neural Networks (IJCNN), The 2011 International Joint Conference on

Date of Conference:

July 31 2011-Aug. 5 2011