By Topic

A cortex-like model for rapid object recognition using feature-selective hashing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yu-Ju Lee ; Graduate Institute of Electronics Engineering and Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan ; Chuan-Yung Tsai ; Liang-Gee Chen

Building models by mimicking the structures and functions of visual cortex has always been a major approach to implement a human-like intelligent visual system. Several feed-forward hierarchical models have been proposed and perform well on invariant feature extraction. However, less attention has been given to the biologically plausible feature matching model which mimics higher levels of the ventral stream. In this work, with the inspirations from both neuroscience and computer science, we propose a framework for rapid object recognition and present the feature-selective hashing scheme to model the memory association in inferior temporal cortex. The experimental results on 1000-class ALOI dataset demonstrate its efficiency and scalability of learning on feature matching. We also discuss the biological plausibility of our framework and present a bio-plausible network mapping of the feature-selective hashing scheme.

Published in:

Neural Networks (IJCNN), The 2011 International Joint Conference on

Date of Conference:

July 31 2011-Aug. 5 2011