By Topic

Neural-network-based optimal control for a class of nonlinear cdiscrete-time systems with control constraints using the citerative GDHP algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Derong Liu ; Key Lab. of Complex Syst. & Intell. Sci., Chinese Acad. of Sci., Beijing, China ; Ding Wang ; Dongbin Zhao

In this paper, a neural-network-based optimal control scheme for a class of nonlinear discrete-time systems with control constraints is proposed. The iterative adaptive dynamic programming (ADP) algorithm via globalized dual heuristic programming (GDHP) technique is developed to design the optimal controller with convergence proof. Three neural networks are used to facilitate the implementation of the iterative algorithm, which will approximate at each iteration the cost function, the optimal control law, and the controlled nonlinear discrete-time system, respectively. A simulation study is carried out to demonstrate the effectiveness of the present approach in dealing with the nonlinear constrained optimal control problem.

Published in:

Neural Networks (IJCNN), The 2011 International Joint Conference on

Date of Conference:

July 31 2011-Aug. 5 2011