By Topic

Comparative genomics revealed a novel DNA-binding regulatory protein involved in homologous recombination in bacteria

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yang Gao ; Comput. Network Inf. Center, Chinese Acad. of Med. Sci., Beijing, China ; Yan Zhang

Homologous recombination is a fundamental cellular process that is most widely used by cells to rearrange genes and accurately repair DNA double-strand breaks. It may result in the formation of a critical intermediate named Holliday junction, which is a four-way DNA junction and needs to be resolved to allow chromosome segregation. Different Holliday junction resolution systems and enzymes have been characterized from all three domains of life. In bacteria, the RuvABC complex is the most important resolution system. In this study, we conducted comparative genomics studies to identify a novel DNA-binding protein, YebC, which may serve as a key regulator of RuvABC resolvasome. On the other hand, the presence of YebC orthologs in some organisms lacking RuvC implied that it might participate in other biological processes. Further phylogenetic analysis of YebC protein sequences revealed two functionally different subtypes of this family: YebC_I and YebC_II. Only YebC_I subgroup may play an important role in regulating RuvABC gene expression in bacteria. Investigation of YebC-like proteins in eukaryotes suggested that they may have originated from YebC_II proteins and evolved a new function as a specific translational activator in mitochondria. Finally, additional phylum-specific genes associated with Holliday junction resolution were predicted. Overall, this study provides new insight into the basic mechanism of Holliday junction resolution and homologous recombination in bacteria.

Published in:

Systems Biology (ISB), 2011 IEEE International Conference on

Date of Conference:

2-4 Sept. 2011