By Topic

Phenotype-difference oriented identification of molecular functions for diabetes progression in Goto-Kakizaki rat

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Guanying Piao ; Key Lab. of Syst. Biol., Chinese Acad. of Sci., Shanghai, China ; Bangguo Qian ; Saito, S. ; Zhi-Ping Liu
more authors

In general, molecular signatures of diseases are estimated by comparing the two sets of molecular data measured for the samples with distinctive phenotypes, and then molecular functions of the diseases are characterized by the following analyses of the signatures. Unfortunately, ambiguous relationships between molecular signatures and functions are observed in some cases, due to a posteriori justification from molecular level to phenotype level. Here, we propose a method for detecting molecular functions of the disease by a deductive justification from phenotype level to molecular level, and illustrate its performance by applying our method to the gene expression and phenotype data sets for diabetes progression in Goto-Kakizaki rat. By our method, the functions identified by the previous studies were well covered, and furthermore, some implications for molecular mechanisms were obtained. Our phenotype-difference oriented method provides some clues to bridge directly a gap between molecular signatures and phenotype data in diabetes.

Published in:

Systems Biology (ISB), 2011 IEEE International Conference on

Date of Conference:

2-4 Sept. 2011