By Topic

Discrimination of multiple PD sources using wavelet decomposition and principal component analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Hao, L. ; Tony Davies High Voltage Lab., Univ. of Southampton, Southampton, UK ; Lewin, P.L. ; Hunter, J.A. ; Swaffield, D.J.
more authors

Partial discharge (PD) signals generated within electrical power equipment can be used to assess the condition of the insulation. In practice, testing often results in multiple PD sources. In order to assess the impact of individual PD sources, signals must first be discriminated from one another. This paper presents a procedure for the identification of PD signals generated by multiple sources. Starting with the assumption that different PD sources will display unique signal profiles this will be manifested in the distribution of energies with respect to frequency and time. Therefore the technique presented is based on the comparison of signal energies associated with particular wavelet-decomposition levels. Principal component analysis is adopted to reduce the dimensionality of the data, whilst minimizing lost information in the data concentration step. Physical parameters are extracted from individual PD pulses and projected into 3-dimensional space to allow clustering of data from specific PD sources. The density-based spatial clustering of applications with noise (DBSCAN) clustering algorithm is chosen for its ability to discover clusters of arbitrary shape in n-dimension space. PD data from individual clusters can then be further analyzed by projecting the clustered data with respect to the original phase relationship. Results and analysis of the technique are compared for experimentally measured PD data from a range of sources commonly found in three different types of high voltage (HV) equipment; ac synchronous generators, induction motors and distribution cables. These experiments collect data using varied test arrangements including sensors with different bandwidths to demonstrate the robustness and indicate the potential for wide applicability of the technique to PD analysis for a range of insulation systems.

Published in:

Dielectrics and Electrical Insulation, IEEE Transactions on  (Volume:18 ,  Issue: 5 )