Scheduled System Maintenance on December 17th, 2014:
IEEE Xplore will be upgraded between 2:00 and 5:00 PM EST (18:00 - 21:00) UTC. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Smarter log analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Aharoni, E. ; IBM Research Division, Haifa Research Lab, Haifa University Campus, Mount Carmel, Haifa, Israel ; Fine, S. ; Goldschmidt, Y. ; Lavi, O.
more authors

Modern computer systems generate an enormous number of logs. IBM Mining Effectively Large Output Data Yield (MELODY) is a unique and innovative solution for handling these logs and filtering out the anomalies and failures. MELODY can detect system errors early on and avoid subsequent crashes by identifying the root causes of such errors. By analyzing the logs leading up to a problem, MELODY can pinpoint when and where things went wrong and visually present them to the user, ensuring that corrections are accurately and effectively done. We present the MELODY solution and describe its architecture, algorithmic components, functions, and benefits. After being trained on a large portion of relevant data, MELODY provides alerts of abnormalities in newly arriving log files or in streams of logs. The solution is being used by IBM services groups that support IBM xSeries® servers on a regular basis. MELODY was recently tested with ten large IBM customers who use zSeries® machines and was found to be extremely useful for the information technology experts in those companies. They found that the solution's ability to reduce extensively large log data to manageable sets of highlighted messages saved them time and helped them make better use of the data.

Note: The Institute of Electrical and Electronics Engineers, Incorporated is distributing this Article with permission of the International Business Machines Corporation (IBM) who is the exclusive owner. The recipient of this Article may not assign, sublicense, lease, rent or otherwise transfer, reproduce, prepare derivative works, publicly display or perform, or distribute the Article.  

Published in:

IBM Journal of Research and Development  (Volume:55 ,  Issue: 5 )