By Topic

Extracting insights from social media with large-scale matrix approximations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Sindhwani, V. ; IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, NY, USA ; Ghoting, A. ; Ting, E. ; Lawrence, R.

Social media platforms such as blogs, Twitter® accounts, and online discussion sites are large-scale forums where every individual can potentially voice an influential public opinion. According to recent surveys, a massive number of Internet users are turning to such forums to collect recommendations and reviews for products and services, and to shape their individual choices and stances by the commentary of the online community as a whole. The unsupervised extraction of insight from unstructured user-generated web content requires new methodologies that are likely to be rooted in natural language processing and machine-learning techniques. Furthermore, the unprecedented scale of data begging to be analyzed necessitates the implementation of these methodologies on modern distributed computing platforms. In this paper, we describe a flexible new family of low-rank matrix approximation algorithms for modeling topics in a given corpus of documents (e.g., blog posts and tweets). We benchmark distributed optimization algorithms for running these models in a Hadoop™-enabled cluster environment. We describe online learning strategies for tracking the evolution of ongoing topics and rapidly detecting the emergence of new themes in a streaming setting.

Note: The Institute of Electrical and Electronics Engineers, Incorporated is distributing this Article with permission of the International Business Machines Corporation (IBM) who is the exclusive owner. The recipient of this Article may not assign, sublicense, lease, rent or otherwise transfer, reproduce, prepare derivative works, publicly display or perform, or distribute the Article.  

Published in:

IBM Journal of Research and Development  (Volume:55 ,  Issue: 5 )