By Topic

A Blind Phase Stabilization Algorithm for Parallel Coherent Receivers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Johannisson, P. ; Dept. of Microtechnol. & Nanosci., Chalmers Univ. of Technol., Goteborg, Sweden ; Gosset, C. ; Karlsson, M.

The impact from phase drifts in the different branches of parallel coherent receivers is investigated and it is shown how the spectrum is broadened when the receiver branches are not phase stabilized. Based on this, we propose a blind algorithm for compensating these phase drifts in digital signal processing by minimization of the spectral width. The algorithm performance is then evaluated by numerical simulations of quadrature phase-shift keying data using return-to-zero modulation. It is found that the algorithm is capable of identifying the phases with sufficient accuracy to make the residual effect of the phase mismatches negligible compared to the signal distortion by noise at a bit error rate of 10-3.

Published in:

Lightwave Technology, Journal of  (Volume:29 ,  Issue: 24 )