By Topic

Interactive Learning in Continuous Multimodal Space: A Bayesian Approach to Action-Based Soft Partitioning and Learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Firouzi, H. ; Control & Intell. Process. Center of Excellence, Univ. of Tehran, Tehran, Iran ; Ahmadabadi, M.N. ; Araabi, B.N. ; Amizadeh, S.
more authors

A probabilistic framework for interactive learning in continuous and multimodal perceptual spaces is proposed. In this framework, the agent learns the task along with adaptive partitioning of its multimodal perceptual space. The learning process is formulated in a Bayesian reinforcement learning setting to facilitate the adaptive partitioning. The partitioning is gradually and softly done using Gaussian distributions. The parameters of distributions are adapted based on the agent's estimate of its actions' expected values. The probabilistic nature of the method results in experience generalization in addition to robustness against uncertainty and noise. To benefit from experience generalization diversity in different perceptual subspaces, the learning is performed in multiple perceptual subspaces-including the original space-in parallel. In every learning step, the policies learned in the subspaces are fused to select the final action. This concurrent learning in multiple spaces and the decision fusion result in faster learning, possibility of adding and/or removing sensors-i.e., gradual expansion or contraction of the perceptual space-, and appropriate robustness against probable failure of or ambiguity in the data of sensors. Results of two sets of simulations in addition to some experiments are reported to demonstrate the key properties of the framework.

Published in:

Autonomous Mental Development, IEEE Transactions on  (Volume:4 ,  Issue: 2 )