By Topic

Isochronous Synchronization Between Chaotic Semiconductor Lasers Over 40-km Fiber Links

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Wu, Jia-Gui ; Sch. of Phys., Southwest Univ., Chongqing, China ; Wu, Zheng-mao ; Xia, Guang-qiong ; Tao Deng
more authors

A long-distance isochronous chaos synchronization system, composed of a driving chaotic semiconductor laser and twin semiconductor lasers, is demonstrated experimentally. Via a driven chaotic signal which is generated by the driving chaotic semiconductor laser subject to external feedback and then injects into the twin semiconductor lasers by a pair of 20-km single-mode fibers, respectively, isochronous synchronization between the twin semiconductor lasers is experimentally observed. Further results show that high-quality isochronous synchronization can still be maintained even though the correlation coefficient between the driving laser and twin lasers is low. In addition, the bandwidth of synchronized chaotic signals is enhanced to more than 10 GHz although the bandwidth of driving signal is about 5.7 GHz.

Published in:

Photonics Technology Letters, IEEE  (Volume:23 ,  Issue: 24 )