By Topic

Stability and Convergence Analysis for a Class of Neural Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xingbao Gao ; Coll. of Math. & Inf. Sci., Shaanxi Normal Univ., Xi''an, China ; Li-Zhi Liao

In this paper, we analyze and establish the stability and convergence of the dynamical system proposed by Xia and Feng, whose equilibria solve variational inequality and related problems. Under the pseudo-monotonicity and other conditions, this system is proved to be stable in the sense of Lyapunov and converges to one of its equilibrium points for any starting point. Meanwhile, the global exponential stability of this system is also shown under some mild conditions without the strong monotonicity of the mapping. The obtained results improve and correct some existing ones. The validity and performance of this system are demonstrated by some numerical examples.

Published in:

Neural Networks, IEEE Transactions on  (Volume:22 ,  Issue: 11 )