By Topic

A Multilevel Memetic Approach for Improving Graph k-Partitions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Una Benlic ; University of Angers, France ; Jin-Kao Hao

Graph partitioning is one of the most studied NP-complete problems. Given a graph G=(V, E) , the task is to partition the vertex set V into k disjoint subsets of about the same size, such that the number of edges with endpoints in different subsets is minimized. In this paper, we present a highly effective multilevel memetic algorithm, which integrates a new multiparent crossover operator and a powerful perturbation-based tabu search algorithm. The proposed crossover operator tends to preserve the backbone with respect to a certain number of parent individuals, i.e., the grouping of vertices which is common to all parent individuals. Extensive experimental studies on numerous benchmark instances from the graph partitioning archive show that the proposed approach, within a time limit ranging from several minutes to several hours, performs far better than any of the existing graph partitioning algorithms in terms of solution quality.

Published in:

IEEE Transactions on Evolutionary Computation  (Volume:15 ,  Issue: 5 )