By Topic

MEMS for Thermogravimetry: Fully Integrated Device for Inspection of Nanomasses

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Iervolino, E. ; Xensor Integration, Delfgauw, Netherlands ; van Herwaarden, A.W. ; van der Vlist, W. ; Sarro, P.M.

This paper presents a microelectromechanical-systems device for thermogravimetric analysis (TGA) with integrated thermal actuators. It consists of a sensing cantilever paddle connected to two separated thermal actuators, one at each side of the cantilever. An integrated thermocouple allows to measure directly the temperature difference between the heater at the tip of the cantilever paddle and the device silicon frame. The cantilever paddle vibration amplitude (frequency) is measured with an integrated piezoresistor. The temperature dependence of the resonance frequency on local heating with the integrated heater is investigated. Mass and temperature calibrations are performed from 0 to 6 ng and from 300 K to 823 K, respectively. To demonstrate the device performance, TGA of polyamide 6 and paraffin samples is carried out. TGA can be performed with the presented device in the temperature range from 298 K up to 920 K for sample masses as small as 0.8 ng. The mass sensitivity is about 164 Hz/ng at ambient temperature.

Published in:

Microelectromechanical Systems, Journal of  (Volume:20 ,  Issue: 6 )