By Topic

Lab-on-a-Fiber Device for Trace Vapor TNT Explosive Detection: Comprehensive Performance Evaluation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Jianjun Ma ; Centre de Rech. en photonique, Univ. du Quebec en Outaouais, Gatineau, QC, Canada ; Kos, A. ; Bock, W.J. ; Xianzhe Li
more authors

Based on the previously proposed concept of a lab on a fiber (LOF) and an LOF-based platform for detecting trace vapors of TNT explosives, in this paper, we study the compatibility of the LOF device with a preconcentration unit. We report the detail investigation of factors that crucially affect the overall performance of this LOF platform. From a theoretical perspective, we investigate the efficiency of a light source formed at the fiber tip on sensory film excitation. Experimentally, we demonstrate the much faster response time of the LOF over a sensory film on a bulky planar glass substrate. We also evaluate the following factors that significantly impact the sensitivity of the instrumentation system: 1) the proper bond between the sensory film and the fiber surface; 2) the concentration of polymer solution for thin-film formation; and 3) the degradation of thin film in the presence of ambient light and the oxygen content in the air.

Published in:

Lightwave Technology, Journal of  (Volume:30 ,  Issue: 8 )