By Topic

Properties and Mitigation of Edge Artifacts in PSF-Based PET Reconstruction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Shan Tong ; Department of Radiology, University of Washington, Seattle, WA, USA ; Adam M. Alessio ; Kris Thielemans ; Charles Stearns
more authors

PSF (point spread function) based image reconstruction causes an overshoot at sharp intensity transitions (edges) of the object. This edge artifact, or ringing, has not been fully studied. In this work, we analyze the properties of edge artifacts in PSF-based reconstruction in an effort to develop mitigation methods. Our study is based on 1D and 2D simulation experiments. Two approaches are adopted to analyze the artifacts. In the system theory approach, we relate the presence of edge artifacts to the null space and conditioning of the imaging operator. We show that edges cannot be accurately recovered with a practical number of image updates when the imaging matrices are poorly conditioned. In the frequency-domain analysis approach, we calculate the object-specific modulation transfer function (OMTF) of the system, defined as spectrum of the reconstruction divided by spectrum of the object. We observe an amplified frequency band in the OMTF of PSF-based reconstruction and that the band is directly related to the presence of ringing. Further analysis shows the amplified band is linearly related to kernel frequency support (the reciprocal of the reconstruction kernel FWHM), and the relation holds for different objects. Based on these properties, we develop a band-suppression filter to mitigate edge artifacts. We apply the filter to simulation and patient data, and compare its performance with other mitigation methods. Analysis shows the band-suppression filter provides better tradeoff of resolution and ringing suppression than a low-pass filter.

Published in:

IEEE Transactions on Nuclear Science  (Volume:58 ,  Issue: 5 )