By Topic

A 280-GHz Schottky Diode Detector in 130-nm Digital CMOS

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Ruonan Han ; Dept. of Electr. & Comput. Eng., Univ. of Florida, Gainesville, FL, USA ; Yaming Zhang ; Coquillat, D. ; Videlier, H.
more authors

A 2×2 array of 280-GHz Schottky-barrier diode detectors with an on-chip patch antenna (255 × 250 μm2) is fabricated in a 130-nm logic CMOS process. The series resistance of diode is minimized using poly-gate separation (PGS), and exhibits a cut-off frequency of 2 THz. Each detector unit can detect an incident carrier with 100-Hz ~ 2-MHz amplitude modulation. At 1-MHz modulation frequency, the estimated voltage responsivity and noise equivalent power (NEP) of the detector unit are 250 V/W and 33 pW/Hz1/2, respectively. An integrated low-noise amplifier further boosts the responsivity to 80 kV/W. At supply voltage of 1.2 V, the entire chip consumes 1.6 mW. The array occupies 1.5 × 0.8 mm2. A set of millimeter-wave images with a signal-noise ratio of 48 dB is formed using the detector. These suggest potential utility of Schottky diode detectors fabricated in CMOS for millimeter wave and sub-millimeter wave imaging.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:46 ,  Issue: 11 )