Cart (Loading....) | Create Account
Close category search window
 

Statistical process control with autocorrelated data using neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yuangyai, C. ; Fac. of Eng., King Mongkut's Inst. of Technol. Ladkrabang, Bangkok, Thailand ; Abrahams, R.

Statistical Process Control (SPC) is widely used for monitoring the performance of processes in manufacturing. Traditional SPC methods require trained individuals to read data which results in slow and limited detection. Much research has been devoted into developing an online automated system for SPC, so that the abnormality can be detected quickly and corrected by the process operation. To build a system as such, artificial neural networks (ANN) are widely used as tools where complex patterns can be difficult to recognize. Many research projects involve using random data patterns for training and recognition of patterns for ANN/SPC applications. However, many manufacturing processes involve autocorrelated data, to determine the effect of autocorrelated data, green sand data was analyzed and a neural network was built and trained to analyze a number of out of control patterns. Overall, the network performed best for detecting larger mean shifts.

Published in:

Quality and Reliability (ICQR), 2011 IEEE International Conference on

Date of Conference:

14-17 Sept. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.