Cart (Loading....) | Create Account
Close category search window
 

Self-Biased Differential Dual Spin Valve Readers for Future Magnetic Recording

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Han, G.C. ; Data Storage Inst., A*STAR (Agency for Sci., Technol. & Res.), Singapore, Singapore ; Wang, C.C. ; Qiu, J.J. ; Wang, L.
more authors

For future magnetic recording, one challenge is that the shield to shield spacing (SSS) of readers cannot be scaled down to achieve the linear density requirement. A differential dual spin valve (DDSV) has been proposed to improve the linear resolution as it does not rely on the magnetic shields to diminish the interference from adjacent bits. The side reading becomes more and more challenging as the track width shrinks to below SSS to accommodate high track density, in particular for a DDSV reader in which no magnetic shield or larger SSS is used. A self-biased DDSV structure is proposed to replace the conventional abutted junction stabilization scheme. In the self-biased DDSV readers, two side shields are put at the both sides of the sensor across the track direction in the replacement of the hard bias (HB). The stray fields from the two free layers in the DDSV sensor bias each other to stabilize the domain structure of the free layers. Preliminary analysis shows that the self-bias DDSV is also robust against the spin torque-induced magnetic instability. Simulation results indicate that the self-biased DDSV reader has much better reading sensitivity for the opposing fields generated by magnetic transitions than HB-stabilized sensor. It is found that for DDSV readers, the mag-noise is less significant due to a larger signal field and thicker free layer. Current perpendicular to the plane (CPP)-DDSV sensors have been fabricated and show very good differential effect in the real operating mode. The magnetoresistance performance of individual spin valve in CPP-DDSV sensors has been obtained through measurements with applied field and pinning field parallel to the easy axis of the free layer.

Published in:

Magnetics, IEEE Transactions on  (Volume:48 ,  Issue: 5 )

Date of Publication:

May 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.