Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

{\bf S}_{3} : A Spectral and Spatial Measure of Local Perceived Sharpness in Natural Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Vu, C.T. ; Sch. of Electr. & Comput. Eng., Oklahoma State Univ., Stillwater, OK, USA ; Phan, T.D. ; Chandler, D.M.

This paper presents an algorithm designed to measure the local perceived sharpness in an image. Our method utilizes both spectral and spatial properties of the image: For each block, we measure the slope of the magnitude spectrum and the total spatial variation. These measures are then adjusted to account for visual perception, and then, the adjusted measures are combined via a weighted geometric mean. The resulting measure, i.e., S3 (spectral and spatial sharpness), yields a perceived sharpness map in which greater values denote perceptually sharper regions. This map can be collapsed into a single index, which quantifies the overall perceived sharpness of the whole image. We demonstrate the utility of the S3 measure for within-image and across-image sharpness prediction, no-reference image quality assessment of blurred images, and monotonic estimation of the standard deviation of the impulse response used in Gaussian blurring. We further evaluate the accuracy of S3 in local sharpness estimation by comparing S3 maps to sharpness maps generated by human subjects. We show that S3 can generate sharpness maps, which are highly correlated with the human-subject maps.

Published in:

Image Processing, IEEE Transactions on  (Volume:21 ,  Issue: 3 )