By Topic

Wavelength-Resolved Flow Cytometer Under a Dark-Field Illumination Configuration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Shi-Wei Lin ; Inst. of Biomed. Eng., Nat. Cheng Kung Univ., Tainan, Taiwan ; Pin-Yao Wang ; Chen, A. ; Chih-Han Chang
more authors

This paper presents a novel yet high-performance diascopic illumination configuration for simultaneously detecting cells of different sizes and different fluorescence labeling in a microfluidic chip. An objective-type dark-field condenser equipped with a low-cost tungsten bulb light source with continuous wavelengths (400 to 900 nm) and an UV-Vis-NIR spectrometer is used for detecting the multispectral signals from various particles and cells. With this approach, continuous cell counting and spectra analyzing are realized in a single channel without using any spatial filter and delicate optical detectors. Results show that the developed system is capable of identifying different labeled particle and cell samples by extracting the information side-scatter, absorption, and fluorescence from the information-rich spectra. This proposed system provides an efficient multicolor detection for identification and classification of a microflow cytometer chip.

Published in:

Sensors Journal, IEEE  (Volume:11 ,  Issue: 11 )