By Topic

Single-Crystal PMN-PT MEMS Deformable Mirrors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hyunkyu Park ; Dept. of Mech. & Aerosp. Eng., Univ. of California, Davis, CA, USA ; Horsley, D.A.

This paper describes microelectromechanical systems deformable mirrors (DMs) fabricated from Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystal (PMN-PT) for use in ocular adaptive optics. The DM is a piezoelectric unimorph with 35 actuators on a 13-mm circular membrane. Each actuator inside the 8-mm pupil achieves a static stroke of over 5 μm at 10 V. Dynamic measurements prove that the DM can be operated up to a 2.27-kHz bandwidth. The large stroke with low driving voltage and high operating bandwidth confirm that the DM is a promising candidate for use as a wavefront corrector in vision science applications. The measured piezoelectric properties of the PMN-PT are in close agreement with factory specifications, demonstrating that the piezoelectric properties of single-crystal PMN-PT are not degraded by the bonding and lapping process used here. The large 13-mm-diameter 30-μm-thick membrane is produced by constructing silicon rings to protect the membrane from the considerable compressive stress present in the SiO2 layer of a silicon-on-insulator wafer. In the prototype mirror, residual stress in the electrode metal results in an initial peak-to-valley surface flatness of 3.3 μm which is reduced to 0.7 μm by iterative computation of the control voltages applied to the electrodes.

Published in:

Microelectromechanical Systems, Journal of  (Volume:20 ,  Issue: 6 )