By Topic

Mimicking human strategies in fighting games using a Data Driven Finite State Machine

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
S. Saini ; Dept. of Comput. Sci., Loughborough Univ., Loughborough, UK ; P. W. H. Chung ; C. W. Dawson

Multiplayer fighting videogames have become an increasingly popular over the last few years, especially with the introduction of online play, making for a more competitive experience. Multiplayer fighting games give players the opportunity to utilize particular strategies and tactics to win, allowing them to use their own signature style. As a player can only play against a particular opponent who is actively participating in the game themselves, they cannot practice combating the opponent's style if the opponent is not participating in the game. This paper presents a novel approach for an avatar to learn and mimic the style of a player. It does this by recording and analyzing the data before splitting it up into two tiers; tactical data and strategic data. The approach uses a Naïve Bayes classifier to classify the tactics to particular states, and a Data Driven Finite State Machine to dictate when certain tactics are used. Statistics recorded during an experiment involving the approach are discussed, which indicate that the architecture of the Artificial Intelligence is fit for purpose, but does require refinement. Limitations of the architecture are discussed, including that such an approach may not provide accurate results when more parameters are considered.

Published in:

Information Technology and Artificial Intelligence Conference (ITAIC), 2011 6th IEEE Joint International  (Volume:2 )

Date of Conference:

20-22 Aug. 2011