By Topic

A robust Hidden Markov Model based clustering algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Shitong Yao ; Dept. of Comput. Sci. & Eng., Shanghai Jiao Tong Univ., Shanghai, China

Hidden Markov models (HMMs) are widely employed in sequential data modeling both because they are capable of handling multivariate data of varying length, and because they capture the underlying hidden properties of time-series. Over the years, HMM-based clustering methods have been widely investigated and improved. However, their performance on noisy data and the effectiveness of similarity measure between sequences remain less explored. In this paper, we present a robust algorithm for sequential data clustering by combining spectral analysis with HMMs. We first derive Fisher kernels from continuous density HMMs for similarity matrix construction, and then apply spectral clustering algorithm to the mapped data. The eigenvector decomposition step in spectral analysis is critical for noise removal and dimensionality reduction. Experimental results on both synthetic and real-world data indicate that our proposed approach is more tolerant to noise and achieves improved accuracy compared to many state-of-the-art algorithms.

Published in:

Information Technology and Artificial Intelligence Conference (ITAIC), 2011 6th IEEE Joint International  (Volume:2 )

Date of Conference:

20-22 Aug. 2011