By Topic

Handwritten Armenian character recognition based on discrete cosine transform and artificial immune system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Yu Yang ; Basic Dept., Chinese People's Armed Police Forces Acad., Langfang, China

Artificial Immune System[1] is engineering system which has been inspired from the functioning of the biologic al immune system. In this paper, handwritten Armenian character recognition strategy using artificial immune system was proposed and carefully experimented. With 90 feature coefficients extracted from 24*24 Armenian character image using DCT based on 8*8 image sub-block as its feature vector, 38 antibody libraries for 38 character category were trained and built to recognize Armenian characters with artificial immune algorithm. The contrast experiment was done using three-tiered feed-forward, back-propagation neural network model with sigmoid transfer function, 0.01 learning rate parameter and the same input feature coefficients[8]. The experimental results indicated that the artificial immune system model has more advantages than BP neural network in character recognition.

Published in:

Information Technology and Artificial Intelligence Conference (ITAIC), 2011 6th IEEE Joint International  (Volume:2 )

Date of Conference:

20-22 Aug. 2011