By Topic

An Energy-Efficient Clustering Solution for Wireless Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Dali Wei ; Jiangsu Tianze Infoindustry Co. Ltd., China ; Yichao Jin ; Vural, S. ; Moessner, K.
more authors

Hot spots in a wireless sensor network emerge as locations under heavy traffic load. Nodes in such areas quickly deplete energy resources, leading to disruption in network services. This problem is common for data collection scenarios in which Cluster Heads (CH) have a heavy burden of gathering and relaying information. The relay load on CHs especially intensifies as the distance to the sink decreases. To balance the traffic load and the energy consumption in the network, the CH role should be rotated among all nodes and the cluster sizes should be carefully determined at different parts of the network. This paper proposes a distributed clustering algorithm, Energy-efficient Clustering (EC), that determines suitable cluster sizes depending on the hop distance to the data sink, while achieving approximate equalization of node lifetimes and reduced energy consumption levels. We additionally propose a simple energy-efficient multihop data collection protocol to evaluate the effectiveness of EC and calculate the end-to-end energy consumption of this protocol; yet EC is suitable for any data collection protocol that focuses on energy conservation. Performance results demonstrate that EC extends network lifetime and achieves energy equalization more effectively than two well-known clustering algorithms, HEED and UCR.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:10 ,  Issue: 11 )