By Topic

A Fast Back-Projection Algorithm Based on Cross Correlation for GPR Imaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lin Zhou ; School of Electronic Science and Engineering, National University of Defense Technology, Changsha, China ; Chunlin Huang ; Yi Su

In ground-penetrating radar imaging, the classic back-projection (BP) algorithm has an excellent reputation for imaging in layered mediums with convenience and robustness. However, the classic BP algorithm is time consuming and with a lot of artifacts, which have adverse effects on the following work like detection and recognition. A novel BP algorithm, which is both fast and with good effect of suppressing artifacts, is proposed in this letter. At first, an approved approximation method is used to calculate the position of refraction point with remarkable speed and satisfactory accuracy. Then, a lookup table is used to reduce the redundancy in classic BP algorithm. In order to achieve effective artifact suppression, a cross-correlation-based method is introduced. Experimental results of field data present the superiority of the proposed BP algorithm over its classic counterpart both in operation speed and artifact suppression.

Published in:

IEEE Geoscience and Remote Sensing Letters  (Volume:9 ,  Issue: 2 )