By Topic

Sensitivity Calculations for Poisson's Equation via the Adjoint Field Method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Aghasi, A. ; Dept. of Electr. & Comput. Eng., Tufts Univ., Medford, MA, USA ; Miller, E.L.

Adjoint field methods are both elegant and efficient for calculating sensitivity information required across a wide range of physics-based inverse problems. In this letter, we provide a unified approach to the derivation of such methods for problems whose physics are provided by Poisson's equation. Unlike existing approaches in the literature, we consider in detail and explicitly the role of general boundary conditions in the derivation of the associated adjoint-field-based sensitivities. We highlight the relationship between the adjoint field computations required for both gradient decent and Gauss-Newton approaches to image formation. Our derivation is based on standard results from vector calculus coupled with transparent manipulation of the underlying partial different equations, thereby making the concepts employed in this letter easily adaptable to other systems of interest.

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:9 ,  Issue: 2 )