Cart (Loading....) | Create Account
Close category search window
 

A DC Offset Current Compensation Strategy in Transformerless Grid-Connected Power Converters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Buticchi, G. ; Dipt. di Ing. dell''Inf., Univ. of Parma, Parma, Italy ; Lorenzani, E. ; Franceschini, G.

A line frequency transformer is usually employed in grid-connected power converters, from both renewable and traditional energy sources, in order to suppress the DC current component and the ground leakage current. Solutions employing a high frequency transformer or employing no transformer at all have recently been investigated in order to reduce size, weight and cost. As a consequence, unless a suitable remedy is adopted, a DC current component exceeding the limits enforced by international standards may be injected into the grid. This paper proposes a simple and cheap solution to reduce the DC current component injected into the grid in the case of a full-bridge, single-phase, transformerless converter. The proposed strategy is intrinsically insensitive to offset measurement errors and can be utilized as a robust and dynamic offset compensator for the current transducer. The simulation results have confirmed the theoretical behavior of the proposed solution, while the experimental ones, performed for different values of output power and for different current control architectures, have shown its effectiveness.

Published in:

Power Delivery, IEEE Transactions on  (Volume:26 ,  Issue: 4 )

Date of Publication:

Oct. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.