By Topic

Fuzzy-Topology-Integrated Support Vector Machine for Remotely Sensed Image Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hua Zhang ; Key Laboratory for Land Environment and Disaster Monitoring of SBSM, China University of Mining and Technology, Xuzhou, China ; Wenzhong Shi ; Kimfung Liu

This paper presents a novel fuzzy-topology-integrated support vector machine (SVM) (FTSVM) classification method for remotely sensed images based on the standard SVM. Induced threshold fuzzy topology is integrated into the standard SVM. First, the optimal intercorrelation coefficient threshold value is applied to decompose an image class in spectral space into the three parts: interior, boundary, and exterior in fuzzy-topology space. The interior-class pixels are then classified as predefined classes based on maximum likelihood. The exterior-class pixels are ignored. The fuzzy-boundary-class pixels which contain misclassified pixels are reclassified based on the fuzzy-topology connectivity theory. As a result, misclassified pixel problems, to a certain extent, are solved. Two different experiments were performed to evaluate the performance of the FTSVM method, in comparison with standard SVM, maximum likelihood classifier (MLC), and fuzzy-topology-integrated MLC. Experimental results indicate that the FTSVM method performs better than the standard SVM and other methods in terms of classification accuracy, hence providing an effective classification method for remotely sensed images.

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:50 ,  Issue: 3 )