Cart (Loading....) | Create Account
Close category search window
 

Sub-10-nm Tunnel Field-Effect Transistor With Graded Si/Ge Heterojunction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chun-Hsing Shih ; Dept. of Electr. Eng., Nat. Chi Nan Univ., Nantou, Taiwan ; Nguyen Dang Chien

This study presents a new sub-10-nm tunnel field-effect transistor (TFET) with bandgap engineering using a graded Si/Ge heterojunction. Both the height and width of the tunneling barrier are highly controlled by applying gate voltages to ensure a near ideal sub-5-mV/dec switching of scaled sub-10-nm TFETs at 300 K. This study performed a 2-D simulation to elucidate p-body graded Si/Ge heterojunction TFET devices from 50 to 5 nm. The on-state tunneling barrier around the source was narrowed and lowered to demonstrate a high on-current; simultaneously, the off-state tunneling barrier was raised and extended into the drain to control the short-channel effect and ambipolar leakage current. The shorter the length is, the more abrupt is the switching. The breakthrough in subthreshold swing and short-channel effect make the graded Si/Ge TFET highly promising as an ideal green transistor into sub-10-nm regimes.

Published in:

Electron Device Letters, IEEE  (Volume:32 ,  Issue: 11 )

Date of Publication:

Nov. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.