By Topic

Variability of Inversion-Mode and Junctionless FinFETs due to Line Edge Roughness

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Leung, G. ; Electr. Eng. Dept., Univ. of California at Los Angeles, Los Angeles, CA, USA ; Chi On Chui

We investigated the variability impact of line edge roughness (LER) on standard inversion-mode (IM) and junctionless FinFETs (JL-FinFET) designed for the 2009 ITRS high-performance logic 32-, 21-, and 15-nm nodes using technology computer-aided design simulations. Fluctuations in threshold voltage, drive current, leakage current, subthreshold swing, and drain-induced barrier lowering were found to be significantly worse in junctionless devices compared to IM devices at root-mean-square LER amplitudes up to 1 nm. We invoke a simple physical argument to explain these findings based on the operating principles of IM and junctionless devices and the specific means by which LER affects both device architectures. Our findings show that JL-FinFETs are inherently more sensitive to variability than standard IM devices and will pose significant challenges as a feasible post-CMOS technology.

Published in:

Electron Device Letters, IEEE  (Volume:32 ,  Issue: 11 )