Cart (Loading....) | Create Account
Close category search window
 

CMOS-Compatible Vertical-Silicon-Nanowire Gate-All-Around p-Type Tunneling FETs With \leq 50 -mV/decade Subthreshold Swing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Gandhi, R. ; Inst. of Microelectron., Agency for Sci., Technol. & Res., Singapore, Singapore ; Zhixian Chen ; Singh, N. ; Banerjee, K.
more authors

We present a vertical-silicon-nanowire-based p-type tunneling field-effect transistor (TFET) using CMOS-compatible process flow. Following our recently reported n-TFET , a low-temperature dopant segregation technique was employed on the source side to achieve steep dopant gradient, leading to excellent tunneling performance. The fabricated p-TFET devices demonstrate a subthreshold swing (SS) of 30 mV/decade averaged over a decade of drain current and an Ion/Ioff ratio of >; 105. Moreover, an SS of 50 mV/decade is maintained for three orders of drain current. This demonstration completes the complementary pair of TFETs to implement CMOS-like circuits.

Published in:

Electron Device Letters, IEEE  (Volume:32 ,  Issue: 11 )

Date of Publication:

Nov. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.