By Topic

LDA-based model for topic evolution mining on text

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Qingqiang Wu ; Software Sch., Xiamen Univ., Xiamen, China ; Xiang Deng ; Caidong Zhang ; Changlong Jiang

A text mining model for topical evolutionary analysis was proposed through a text latent semantic analysis process on textual data. Analyzing topic evolution through tracking the topic different trends over time. Using the LDA model for the corpus and text to get the topics, and then using Clarity algorithm to measure the similarity of topics in order to identify topic mutation and discover the topic hidden in the text. Experiments show that the proposed model can discover meaningful topical evolution.

Published in:

Computer Science & Education (ICCSE), 2011 6th International Conference on

Date of Conference:

3-5 Aug. 2011