By Topic

Practical Recommendations on Crawling Online Social Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Minas Gjoka ; California Inst. for Telecommun. & Inf. Technol. (CalIT2), Univ. of California, Irvine, CA, USA ; Maciej Kurant ; Carter T. Butts ; Athina Markopoulou

Our goal in this paper is to develop a practical framework for obtaining a uniform sample of users in an online social network (OSN) by crawling its social graph. Such a sample allows to estimate any user property and some topological properties as well. To this end, first, we consider and compare several candidate crawling techniques. Two approaches that can produce approximately uniform samples are the Metropolis-Hasting random walk (MHRW) and a re-weighted random walk (RWRW). Both have pros and cons, which we demonstrate through a comparison to each other as well as to the "ground truth." In contrast, using Breadth-First-Search (BFS) or an unadjusted Random Walk (RW) leads to substantially biased results. Second, and in addition to offline performance assessment, we introduce online formal convergence diagnostics to assess sample quality during the data collection process. We show how these diagnostics can be used to effectively determine when a random walk sample is of adequate size and quality. Third, as a case study, we apply the above methods to Facebook and we collect the first, to the best of our knowledge, representative sample of Facebook users. We make it publicly available and employ it to characterize several key properties of Facebook.

Published in:

IEEE Journal on Selected Areas in Communications  (Volume:29 ,  Issue: 9 )