Cart (Loading....) | Create Account
Close category search window

Permanent Magnet Synchronous Motor Drive Using Hybrid PI Speed Controller With Inherent and Noninherent Switching Functions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sant, A.V. ; Indian Inst. of Technol. Delhi, New Delhi, India ; Rajagopal, K.R. ; Sheth, N.K.

The performance of the fuzzy logic controller (FLC) is better under transient conditions, while that of the proportional plus integral (PI) controller is superior near the steady-state condition. The combined advantages of these two controllers can be obtained with hybrid fuzzy-PI speed controller. The computations involved with the FLC are much higher as compared to that of the PI controller. Generally, the FLC output is near the maximum permissible value at the beginning of a transient condition but reducing with the reduction in the speed error. In this paper, instead of the FLC, a fuzzy equivalent proportional (FEP) controller is used along with the PI controller to make it a hybrid PI (HPI) controller which eventually is much faster and less computation intensive. The performance of the vector-controlled permanent magnet synchronous motor drive with this HPI controller is obtained with six switching functions, namely: 1) saturation; 2) hyperbolic tangent; 3) polynomial S function; 4) output of FEP controller only; 5) output of PI controller only; and 6) combination of the outputs of both the PI and FEP controllers. From the results, it is observed that the polynomial S switching function based HPI controller is better in general for most of the performances.

Published in:

Magnetics, IEEE Transactions on  (Volume:47 ,  Issue: 10 )

Date of Publication:

Oct. 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.