By Topic

Analytical Magnetic Field Analysis and Prediction of Cogging Force and Torque of a Linear and Rotary Permanent Magnet Actuator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Ping Jin ; Sch. of Electr. Eng., Southeast Univ., Nanjing, China ; Shuhua Fang ; Heyun Lin ; Zhu, Z.Q.
more authors

This paper presents a method for analytically analyzing the magnetic field and predicting the cogging force and torque of a linear and rotary permanent magnet actuator (LRPMA). The tubular mover of the LRPMA is transferred into a planar one by using a proposed magnetic field curvature factor and a relative permeance function for the stator slotting so as to simplify the magnetic field calculation. Magnetic field distributions of the LRPMA when the stator slotting is neglected are analytically analyzed using the magnetic scalar potential, and validated by 3-D finite-element method. The linear cogging force and rotary cogging torque of slotted LRPMA are subsequently predicted by the Maxwell stress tensor method and verified by the experimental results on the prototype.

Published in:

Magnetics, IEEE Transactions on  (Volume:47 ,  Issue: 10 )