Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

Effect of Interrow Magnetic Coupling on Band Structures of 2-D Magnonic Crystal Waveguides

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Fu Sheng Ma ; Dept. of Phys., Nat. Univ. of Singapore, Singapore, Singapore ; Hock Siah Lim ; Zhi Kui Wang ; Piramanayagam, S.N.
more authors

We report a micromagnetic investigation of the propagation of spin waves in bi-component magnonic crystal waveguides. The investigated nanostructured waveguides are in the form of regular square lattice arrays of circular Fe dots embedded in a yttrium iron garnet matrix. Magnonic bandgaps of the order of 10 GHz are observed in both calculated frequency power spectra and dispersion curves of spin wave. The effect of the variation of the period along the direction perpendicular to spin wave propagation on magnonic band structures of magnonic crystal waveguides has been investigated. Micromagnetic simulations show that the first bandgap is more sensitive to variations of period than the second bandgap.

Published in:

Magnetics, IEEE Transactions on  (Volume:47 ,  Issue: 10 )